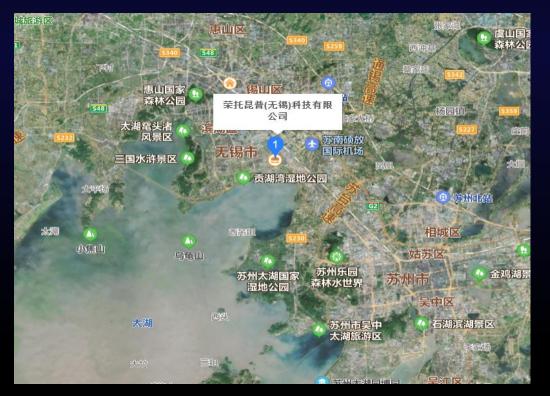


荣托昆普 (无锡) 科技有限公司

Rotokumpu(Wuxi)Technology Co.,Ltd.

下企业实践汇报


孟静、姚建萍

III公司介绍

公司位于太湖明珠城市

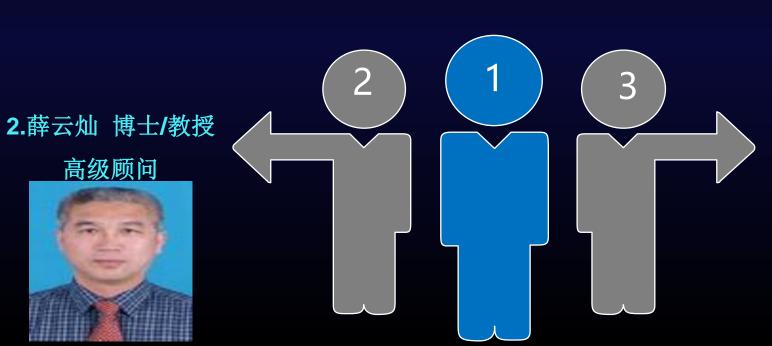
中国无锡——国家软件园

III公司介绍

公司专注于流程工业领域智能制造技术发展,致力于"数字工厂"软硬件产品及整体解决方案的研发和推广, 秉承"数字工厂科技领导者"理念,联合国内知名院校和专业设计院进行合作开发,为企业提供自动化、数字化、信息化、智慧化建设提供运营解决方案。

主要服务对象:

冶金 矿山 水泥 煤炭 能源



II 核心团队

高级顾问

1.杨启文 博士 总工程师

3.代伟 博士 APC首席专家

实践项目介绍

球磨机负荷软测量研究平台

适用磨矿等行业,提供求解球磨机 运行过程中筒体内负荷参数的高效 智能优化求解方法和处理平台

球磨机负荷辅助变量的研究与选择

• 主要参与工作

了解球磨机工作原理

球磨机负荷状态研究

研究磨机入口参数、磨机出口参数对 磨机负荷的影响

• 研究结论

算法选取与改进

选取算法关键:辅助变量与负荷之间的关系是非线性关系

神经网络作为软测量模型的一种,具有高非线性问题求解的能力,根据实际需求选取广义回归神经网络(Generalized Regression Neural Network, GRNN)作为球磨机负荷参数检测的软测量模型。

GRNN缺点:

σ的选择将影响GRNN输出的效果,σ过大将导致欠拟合现象,而过于小则导致过拟合现象。选择合适的σ,对GRNN的性能具有重要意义。

算法选取与改进

选取算法关键:群智能优化算法具有复杂参数寻优的优良效果。

选择其中的麻雀搜索算法(Sparrow Search Algorithm, SSA)对GRNN的σ进行优化,寻找最佳光滑因子参数值

SSA缺点:

收敛速度慢

易陷入局部最优

提出并实现了基于混沌自适应的麻雀搜索算法(Altered Sparrow Search Algorithm-Dynamic Adaptation, ASSA),提高了算法的寻优速度

算法选取与改进

算法过程:


ASSA算法优化GRNN的具体过程为:将麻雀种群中的每个麻雀个体通过映射转化为平滑因子σ,即每个麻雀个体都将对应一个GRNN神经网络,对GRNN进行训练,将训练均方误差作为评价函数,并将该信息传递给SSA算法,利用ASSA算法进行迭代寻优,将找到的最优个体位置作为此时的最优σ参数值,得到最优GRNN网络模型。

平台实现

登录页面:

球磨机负荷参数软测量软件主界面

模型训练

加 球磨机负荷参数软测量	- □ ×
模型训练。球磨机负荷参数测量	
- 模型参数设置————————————————————————————————————	ar m
选择算法: ASSA-GRNN ~ 发现者比例: 0.2	返回
种群规模: 30 侦查者比例: 0.7	
选代次数: 1000 <u>预警者:</u> 0.3	
开始训练 查看历史参数据	
- 测试集数据测试	
选择负荷参数: 选择输入数据条数:	
(1-填充率, 2-料球比, 3-浓度)	
选择输入数据表: 选择输入数据表: 选择训练集数据数:	
开始测试	

测试集数据测试

Şmp	球磨机的	负荷参数软测量	ŧ			<u> </u>	□ ×
棋	型训练	球磨机负荷参	数测量				
	-模型参	数设置————					\ <u>_</u>
		选择算法:	ASSA-GRNN ~	发现者比例:	0.2		返回
		种群规模:	30	侦查者比例:	0.7		
		迭代次数:	1000	预警者:	0.3		
			开始训练	查看历史	2参数据		
	-测试集	数据测试———					
		及荷参数: 1−填充率, 2	1 料球比, 3-浓度	选择输入数据等)	美数: 1500		
	选择转	俞入数据表:	Table_2 ~	选择训练集数据	居数: 1300		
			开始测试				

输入参数

加 球磨机负荷参数软测量				×
模型训练 球磨机负荷参数测量				
── 輸入量 给矿量: 3.2	磨	音能量:		
给水量: 15.2				
电流: 56	磨	磨音信号均值:		
混合磨音信号:	选择	磨音信号特征提取	保存输入量数据	
开始》	则量	返回		
填充率:	料球比:	浓度:		
		2	021年 5月25日	■▼

磨音信号特征提取

┢️️ 球磨机负荷参	送数软测量		- 🗆	\times
模型训练 球磨机负	荷参数测量			
-執入量 给矿量:	3. 2	磨音能量:	1377. 780150538	301
给水量:	15. 2	磨音信号标准差:	55. 29411764705	588
电流:	56	磨音信号均值:	12.46305601298	881
混合磨音	信号: C:\Users\11719\De	选择 磨脅信号特征提取	保存输入量缴损	
	开始测量	返回		
	月海州里	返日		
填充率:	料球比:	浓加	度:	
			2021年 5月25日	3 37

球磨机负荷参数测量结果

₩ 球磨机负荷参数软测量	_		×
模型训练 球磨机负荷参数测量			
- 輸入量 - 给矿量: 3.2	1377.7	78015053801	
	55. 29	41176470588	
电流: 56 磨音信号均值:	12.463	30560129881	
混合磨音信号: C:\Users\11719\De 选择 层管信号特征提取	保存	宇輸入量数据	
开始测量返回			
	₹:	0.41953040	
	2021年	5月25日	II-

成果

中华人民共和国国家版权局 计算机软件著作权登记证书

证书号: 软著登字第9527738号

미리미미미미미미미미

软 件 名 称: 球磨机负荷参数软测量与故障诊断软件

[简称:负荷软测量软件] V1.0

著 作 权 人: 孟静;荣托昆普(无锡)科技有限公司;姚建萍;毛雨萱

开发完成日期: 2021年11月11日

首次发表日期: 2021年11月11日

权利取得方式: 原始取得

权 利 范 围: 全部权利

登 记 号: 2022SR0573539

根据《计算机软件保护条例》和《计算机软件著作权登记办法》的规定,经中国版权保护中心审核,对以上事项予以登记。

No. 10696019

谢谢!